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SOME INVARIANT RELATIONS IN THE PROBLEM OF THE MOTION OF A BODY ON 
A SMOOTH HORIZONTAL PLANE* 

A.S. SUMEIA'IOV 

For the motion of a heavy rigid body on a smooth horizontal plane, we 
find in parametric form general analytical expression for the bounding 
surface of the body, such that the equations of motion admit of four 
linear and velocity-homogeneous invariant relations. We consider in 
detail the special case when the body is bounded by a surface of 
revolution whose axis of symmetry is the axis of one of the circular 
sections of the central gyration ellipsoid. The equations of motion of 
this body admit of a single invariant relation. We determine the 
corresponding stationary motions of the body and derive a sufficient 
condition of stability of some manifolds of stationary motions. 

1. Consider the system of differential equations 

dxidt - x (2, q, z E R', t E R 

defined in some domain of variables. 
The manifold z is called invariant if it consists of integral curves of system (1.1). 

In the neighbourhood of an arbitrary interior point t0 E 2, the (1 - k)-invariant manifold 
is defined by the equations 

P, (2, t) = 0, . . ., FI (2, t) = 0 (W 

where the equalities (1.2) constitute the set of invariant relations of system (1.1). These 
relationsmayinclude first integrals of the system (the constants of integration are incor- 
porated in the functions F,), single invariant relations each locally defining a (1- l)- 
dimensional invariant manifold. 

Rqs.(1.2) carry some information on the behaviour of the solutions of system (1.1) and 
sometimes make it possible to identify important classes of particular solutions of the 
system by elementary techniques /l/. 

For the equations of mechanics, the study of invariant manifolds (their existence and 
their properties) should naturally start with the simple case when the corresponding functions 

Pi are linear in the generalized velocities q*ER”, 

F, = 2 c,,q”=o, . . ., Fk= ~~ck,d~=o @<n) (1.3) 

@fJ = CIJ (d. q E R” is the vector of generalized coordinates of the mechanical system). The 
conditions for some such,manifolds to exist were derived in /2/. 

Below we use the following result /2/. Let 

n 

T=+ 2 OfJ(q)d'q". u=v(q) 
1. j-l 

be respectively the kinetic energy and the force function of a holonomic system with ndegrees 
of"freedom. The Lagrange equationsadmitof a- 1 invariant relations of the form (1.3) if, 
and for V+const only if, the first differential parameter is a function of U: 

n 

A,V = (1.4) 

If condition (1.4) holds, then the force lines are geodesics of the configuration 
manifold of the system /3/. 
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2. Let us apply this criterion to the following problem. A heavy rigid body bounded 
by a regular convex surface moves on an absolutely smooth horizontal plane. Let Or,+rz, be 
the Cartesian system of coordinates formed by the principal central axes of inertia of the 

body, (v,, YI, Ys) and (a,, 00, oS) the components in these axes of the unit vector along the 
vertical and the instantaneous angular velocity of the body respectively, (2,y.z) the co- 
ordinates of the point 0 in the Cartesian system whose xy plane coincides with the supporting 
plane, A, B, C the principal central moments of inertia, and M the mass of the body. 

In general 

where the function p is determined by the shape of the bounding surface and by the mass 
distribution in the body. 

The kinetic energy (multiplied by 2) and the force function are given by (P is the 
weight of the body) 

Crnitting the case lo' = const (a symmetric sphere), we will derive the conditions when 
the equations of motion of the body admit of a set of four linear invariant relations that 
are homogeneous in (41 011 0s. 

Since the equations of motion have three cyclic integrals 

Mz' = r,. My' .y ~2, Ay,o, + By,o, + Cy+r = c., 

(c1* cz, c3 are arbitrary constants), thus required conditions guarantee the existence of an 
additional linear relation, which forms an invariant set together with these integrals for 
cr = c* = CJ = 0. 

The invariant A$ is conveniently evaluated in the quasicoordinates n,, ITS. % 
corresponding to the quasivelocities 011 02, 0s. Here 

(the subscripts are written mod 3). 
We have 

’ M + WA 

(A = aula f bu,’ + cuQ2, a = A-l, b = B-l, c = Cl) 

Therefore, by the definition of the force function (2.2), condition (1.4) reduces to the 
form A = a,@) (ar>O). This equality may be rewritten as 

(3.3) 

Treating u as an unknown function, we note that (2.3) is the Hamilton-Jacobi equation 
in the problem of inertial motion of a rigid body around a fixed point with the supplementary 
constraint that the projection of the angular momentum vector of the body on the vertical 
vanishes (and the constant in the energy integral is h = I/,), This equation is integrated 
in generalized coordinates /4/. 

Let us consider tow cases: 1) some of the numbers A.B, C are equal, 2) A > B> C. 
In the first case, denoting by 8 the angle between the axis of syrmnetry of ttie body 

and the vertical, we may rewrite Eq.(2.3) in terms of Euler angles g~,Cp,e. The coordinates 

%9 are cyclic. Therefore, by (2.4), we find that the height of the centre of mass of 
the body above the supporting plane is an arbitrary function of the angle 8. Only solids of 
revolution have this property. The equations of motion of a solid of revolutionareintegrable 
in quadratures /5/. 

In the second case, we make the substitution 

(2.5) 
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in the equation 

(-c<p<--b,.-b<).<--a) 

[a(~)‘+b(~~](i-vll-vn+e(Y,~-vl~)l=i (2.6) 

V h n) - 0 (a, Ysa v 1 - Yl’ - YI’) (2.7) 

which is the restriction of Eq.(2.3) on the submanifold yI - VI --rl- ys*= 0. Here h, p are 
elliptical coordinates on the surface of the central ellipsoid of inertia of the body 

zr*/a' + t,‘lb’ + z8%+ - i (2.8) 

In the variables L, p, Eq.(2.6) takes the form 

(2.9) 

(x (4 - (a + z)(b + t)(c + 4) 

i.e., the variables are separated. The complete integral of this equation is (e,,e,, are 
constants) 

V = r f-b, e,, h) i- r t-c, e,, cc) -I- e,, (2.10) 

By the theory of /6/, in order to obtain a general solution of Eq.(2.9), we have to 
assign constant values to the parameters e,,e, in (2.10) or alternatively to link them by a 
single dependence, e.g., ea - I (eA and to substitute Into (2.10) the solution % (A* PO of 
the integral equation 

rl C-b, e,, A) + rl t-c, ell 14 + W% = 0 

Formulas (2.11, (2.41, (2.7) and (2.10) can be used to express the height z of the centre 
of mass of the body above the supporting plane as a function of the variables ?.,p. The 
expression for z includes two arbitrary functions f and fi constrained by the single condition 
that the surface S of the body is convex. 

Let us derive a parametric equation of the surface S. For an arbitrary position of the 
body, the vertical through the centre of mass 0 passes through the surface (2.8) at the point 
with the values 10, PO of the elliptical coordinates A, p. If these values kO,pe of the 
Gaussian coordinates are associated with the point of tangency 0, ofthesurface S with the 
supporting plane, then the parametric form of the surface S is globally defined, since the 
surface is convex. 

We have 

where 0, m, n) are the components of the radius-vector OOr in the axes Oz++za, and o19 Y: 
are determined from-the formulas (2.5). 

Differentiating (2.111, we find 

aPr = lap?, + ma,~, + na,va (8, = alap, P - 1, PI 

Hence, using (2.111, we obtain 

These formulas give the required parametric description of the bounding surface of the 

body. 
For bodies whose surfaces belong to this class and only for such bodies (the case of a 

symmetric sphere is not considered), the equations of motion admit of a set of four invariant 



relations of the form (1.3). For instance, this set may comprise the following relations: 

2' = 0, y' = 0, Ay,o, + By,o, + cy,o* = 0, Amao, - cu,o, = 0 

They are linearly independent and their coefficients satisfy the orthogonality condition. 

3. Let us consider in more detail the special case when e, and e, are constant. 
The functions r (-b, Q, h) and r (-c, e,, p) in (2.10) take real values only if we respect- 

ively have 

e, > ilh for -b < h < --a 

el <g l/p for -c< p< -b 

Therefore, the parameter e, may only have a unique constant value 

e, = --lib = - B (3.1) 

For this value of a,, theintegrals in (2.10) are expressible in terms of elementary 
functions. 

Let us determine the geometry of the body. Let H be the foot of the perpendicular 
dropped from the centre of mass 0 to the supporting plane, and N the point where the axis of 
one of the circular sections of the central gyration ellipsoid meets the supporting plane. 
The vector with the components (5 I/b--,0, dc- b)in the axes Or,t,z, pointsinthe direction 
ON. Using Eqs.(2.5) for the components of the vertical vector and the parametric Eqs.(2.12) 
of the surface of the body for the case (3.11, we can show that for any h,~ the points 0, O,, 

H,N lie in the same plane p, 
Let us determine the position of the vector of the kinematically feasible angular velocity 

o relative to the body if the plane p is fixed in stationary space and yet another constraint 
is imposed, OH = const. since the instantaneous velocity of the point 0, of the body lies in 
the supporting plane, the vector o belongs to the p plane (we assume that 0, and H are two 
distinct points). Since the ON axis also belongs to p, we conclude that the vectors ON and 
0 are collinear. Thus, the body may only rotate around a fixed axis ON. Since Oifis arbitrary, 
we conclude that in case (3.1) the body is bounded by a surface of revolution whose axis of 
symmetry is the axis of one of the circular sections of the central gyration ellipsoid of the 
body. 

The equations of motion of this body have a single invariant relation /7/ 

cfb-aqfafc-bus=0 (3.2) 

In a system with known invariant relations (in particular, with known first integrals), 
stationary points of one invariant relation given the values of the constants in the other 
relations correspond to so-called stationary motions of the system /l, 8/. 

Let us find the stationary motions with respect to the kinetic energy integral of a body 
with a surface of revolution whose axis of symmetry passes through the centre of mass of the 
body, lies in the plane orthogonal to the mid-axis of the central inertia ellipsoid, and 
makes an acute angle .8 with the smallest axis of this ellipsoid, 

tg 0 = p f(c - b)l(b - a) (3.3) 

(the corresponding signs should be used in Eqs.(3.2) and (3.3)). Without loss of generality, 
we can also assume that the projection of the centre of mass of the body on the supporting 
plane remains fixed, i.e., x' = y' = 0. 

It is helpful to replace the variables y, with three angles: q- the angle of natural 
rotation of the body about the axis of symmetry, $ - the turning angle of the vertical plane 
of the meridional section of the body , and a -the angle of inclination of the axis of symmetry 
to the horizon (--n/2 < a< n/2). 

The relationship between 01, %1 oa and $', a', 9' for cosa#O is given by 

or = cp' (sin a cos 8 - cos a sin 0 cos cp) - a’ sin 8 sin ‘p + (3.4) 
up’ ~0.3 e 

as =--g’cosasinv + a’coscp 
0) = -9. (sin a sin 8 + cos a co9 e co9 9) - a’ co9 8 sin ‘p - 9’ sin 8 

From (3.2) we obtain (u is a new variable) 

a1 = eBA_’ sin 8, oi - tBP cos 8 (3.5) 

Using formulas (3.3)-(3.5), we rewrite the expression for the total mechanical energy 
of the body in the form 

R = I/, (Aor' + B%’ + Co,‘) + l/,Mz’Sa’S + Pz = 

‘/,B (8’ + 0,‘) + 1/&‘rD” (cp) + Pz 

@ (cp) - c 008 cp + 0, sin 9, 2’ - ddda, a,’ = d@ldq 
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We have to find the stationary points of this function on the manifold defined by the 
integral (given the constant cr) 

--B@(cp)cosa = ca (3.6) 

The stationarity conditions are (a is the Lagrange multiplier) 

Be - Mz’W (cp)sin m - Bo cos ‘p cos a = 0 
Bo, + Mz’W (cp) cos cp - Ba sin m cos a = 0 
@' (cp)(Mz'W(cp) + Bo cos al = 0 

(3.7) 

M~‘d%/daW’~ (tp) + Ps’ f Ba@ (cp) sin a = 0 

From the first two equations of (3.7), we obtain 

Qy (m) = 0 (3.8) 

Hence, 
e = OC08a co9 cp, 0, = ucos a sin p (3.9) 

The third equality in (3.7) is identically true, and the fourth takes the form 

Pz' + BuQ,(q) sin a = 0 (3.10) 

By (3.4) and (3.5), condition (3.8) implies that a' - 0, i.e., in stationary motion the 
of symmetry of the body maintains a constant inclination to the horizon, a = a+ 
Let a' (ao) # 0. 
Formulas (3.9) give the solution of Eqs.O.7). Here u =- bc# set a,, and the value of 

a0 is determined from the equation 

pz' (ad -I- bc,’ tg a8 - 0 

From formulas (3.4) and 0.5), we obtain 

9' = -u, cp*= (tga,- k cos q)u cosa, 

k’ = (1 - HA) (BIC - 1)1 sign k = sign 0 

(3.11) 

The body rotates uniformly around the vertical. If tg a0 \>k, then it also rotates 
around the axis of symmetry with angular velocity of periodically varying magnitude. 
[tga,I<k, then the angular velocity of the natural motion of the body decreases monoton:fcally 
to zero as t--Pm, and the body does not complete a single rotation around the axis of 
symmetry. 

These stationary motions form a 3-dimensional manifold Z, and contain no equilibria. 
These motions exist only if 

2' sin a < 0 (3.12) 

This inequality holds, for instance, in the neighbourhood of a statically stableequilib- 
rium of an asymmetric sphere. Conversely, for a symmetrical body bounded by an ellipsoidal 
surface of revolution whose axis coincides with the largest axis of the ellipsoid, inequality 
(3.15) in general does not hold. 

Let 2' (ao) = 0. 
'If a,# 0, then from Eqs.(3.5), (3.9) and (3.10) it follows that every stationary motion 

of the body is an equilibrium. 
For the case a0 = 01 Eqs.(3.11) hold. The stationary motions form a 2-dimensional 

manifold 2, and include equilibria. For non-equilibrium stationary motions, the smallest and 
the largest axes of the central inertia ellipsoid of the body tend asymptotically in time to 
a horizontal attitude. 

If the axis of symmetry is vertical, then the stationary motions are realizable equilibria, 
since by symmetry of the body surface z'(fn/2)== 0. 

In order to investigate the stability of stationary motions , consider the function 

R = H + u (jr + c,) + V,u*B cos*ao - Pz (a,) = 
‘/,I3 (bdlS + a,*) f ll,Mz" (Q, sincp - f2, cos m)' + P iz(a) - 

- 2 (ao)l + ll,bc,S (1 - cos* a/cos* a@) 

jr = -B@ (cp) cosa - cI, PI = t - acmacoscp, 0, - 

01 - ucos ash cp 

Let r(a,) bs a strict minimum of the function a(a). Then the function R is positive 
definite in the variables &,n,, a-%. Hence /9/, the corresponding manifolds of equilib- 
rium stationary motions and the manifold x, are conditionally stable relative to the 
deviations characterized by these variables. Conditional stability Is understood in the sense 
that the initial points of the perturbed motion paths should satisfy Eq.(3.2) and, as we have 
noted above, the equations t'= y'= 0. 
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Let 3' (ao) =# 0. The condition of positive definiteness of the quadratic form bZ/1 on 
the linear manifold 61, = 0: 

(B cos q cos a0)6Q, f (B sin cp cos aa)&& + 2~~ sin a, ha=- 0 

leads to the single inequality 

b*ca‘ + 3 [Pz’ (a@)]* + bc,*Pz’ (ao) > 0 

Thus, for sufficiently large values of the angular velocity, the manifold Z, of the 
stationary motions of the body is conditionally stable relative to these deviations. 
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SHOCK INTERACTION BETWEEN A CONCENTRATED OBJECT AND A 
ONE-DIMENSIONAL ELASTIC SYSTEM* 

S.B. MAULNOV and G.A. UTKIN 

A physical interpretation of the results obtained earlier**(*fhalanov S.B. 
and Utkin G.A. Formulation of a problem of shock interaction between a 
concentrated object and a one-dimensional elastic system. Gor'kii, 1986. 
Dep. at VINITI 5.12.86, 8304-B86.) for the shock interaction of a homo- 
geneous elastic system with a concentrated object is given in the form of 
the laws of variation of the energy and moments. The impact of a material 
point against a string is considered as an example, and the dependence of 
the time of contact and the coefficient sf restitution on the parameters 
of the problem is given. 

The problem of the correct conditions at the point of contact and of 
relations holding at the beginning and end of contact were solved in /l, 
J2/, where additional geometrical and physical concepts flaws of conser- 
vation of energy, mcmentum, etc.1 were brought in. The study of a 
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